
BIOSTATISTICS 
TOPIC 3: INTRODUCTORY PROBABILITY 

 
 
 
I. INTRODUCTION 
 
   Sir George Pickering, a prominent British medical researcher, once noted 

that "doctors want to help patients, but the extent to which they can help obviously 
depends on the doctor's knowledge. But knowledge is a matter of probability. 
Diagnosis is a matter of probability, and in judging treatment, doctors have to base 
their judgment on knowledge of probability". Some of you may have reservation 
about this comment, but it could be argued that the reality of the world is harsh and 
unyielding, and must be dealt with on its own terms. We work in a world of 
randomness, and there is no way to eliminate completely the risks of being wrong. I 
think our real problem is not how to eliminate them, but how to live with them 
intelligently. In medical research, things do not always work out the way we 
hypothesized or we planned. The main reasons for this are likely that (i) our 
hypothesis is incorrect and/or (ii) we do not have enough evidence to reject/accept 
the hypothesis. The former is hypothetical idea which can be re-defined, however, 
the latter is fact (nothing but the fact) and can not be changed but can be dealt with 
in probabilistic terms. 

 
   In the last topic, we have been concerned with the area of statistics 

generally known as descriptive analysis. We mentioned that statistical inference 
make guesses about a population by using information obtained from a sample 
taken randomly from the population. Statistical inference is largely based on 
probability theory, primarily because probability theory provides a means of 
determining the reliability of inferences. In this topic, we will introduce the basic 
concepts of probability theory to understand the conclusions that result from the 
application of statistical techniques to data analysis as well as the reasons behind 
the requirements for probability sampling in the collection of data. 

 
   Before introducing the operation of probability, we will survey briefly 

some main ideas such as set theory, events, permutation and combination. 
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II. SET THEORY, NOTATION AND CONCEPTS 
 
 DEFINITION: A set is a collection of well-defined, distinct objects with common 

characteristics. The objects are called elements. 
 
 The phase well-defined indicates that we must be able to determine with certainty 

whether or not a given object belongs to the set under study. Thus, in the "set of 
women who had fractures" is well-defined because we do know what a fracture is. 
However, the set of "dishonest salesmen in Australia" is not well-defined because 
there is no universal standard by which to gauge the virtue of honesty or 
dishonesty.  

 
 At this stage, let us denote a set by an uppercase letter and its elements by 

lowercase letters. For example, a set of vowels: A = {a, e, i, o,  u, . . .}. 
 
 (a) Equality of sets. Two sets A and B are equal if every element of set A is equal 

to every element of set B. For example, A={a, e, i, o, u} is equal to set B={i, e, u, 
a, o}.  

 
 (b) Subset of set. If every element of set A is belong to the set B, then A is called a 

subset of B. For example, if A={k, l, m, n} and B={m, r, l, n, k}, then A is being to 
B (which is written as A B∈ ). 

 
 (c) Union of sets. Given two sets A and B, the union of A and B ( A B∪ ) is the set 

consisting of elements that belongs to set A and/or set B. For example, if A={a, e, 
i} and B={c, d, e, i}, then A B∪ ={a, e, i, c, d}.  

 
 (d) Intersection of sets. Given two sets A and B, the intersection of A and B 

( A B∩ ) is the set consisting of elements that belongs to both set A and set B. For 
example, if A={a, e, i} and B={a, c, d, e, i}, then A B∩ ={a, e, i}.  

 
 (e) Complement. The complement of a set contains all elements not in the set, but 

still in the universe. A' is denoted to be complement of A. So, if U={1, 2, 3, 4, 5, 6, 
7, 8, 9} and A={1, 2, 3, 4}, then clearly A is a subset of the universe U, and the 
complement of A is A'={5, 6, 7, 8, 9}. 
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III. SAMPLE SPACE AND EVENTS 
 
(A) SAMPLE SPACE  
 
 DEFINITION: The sample space is defined as the set of all possible outcomes of an 

experiment.  
 
 The term experiment here must be understood from a general point of view, not just 

in terms of biological viewpoint. Throwing a die can be regarded as an experiment, 
as is the study of incidence of fractures. According to this definition, when a die is 
thrown, the sample space is 1, 2, 3, 4, 5 and 6 (since the die has six faces). 
Likewise, when 2 coins are tossed, the sample space must be: head-head, head-tail, 
tail-head and tail-tail. Similarly in a study of fracture, the sample space is those 
who have fracture and those who do not have fracture. 

 
 We often denote the sample space by capital letter ie. X. 
 
(B) EVENTS 
 
 DEFINITION: An event is a possible outcome of an experiment.  
 
 We will denote the possible outcome of an experiment by xi , where i runs from 1 to 

n. Of course, xi  is a subset of a sample space (by the definition of set theory we 

learned earlier). We will now survey a number of types of events. 
 
 Mutually Exclusive Events are events that do not have common sample points. 

That is if A = {5, 6, 7} and B = {1, 2, 3, 4}, then A B∩ = ∅ (no intersection). 
 
 Not Mutually Exclusive Events. Two events are said to be not mutually exclusive 

if they contain one or more common sample points. For example, let A = {5, 6, 7} 
and B = {7, 8, 9, 10} then A B∩ = 7  are mutually inclusive.  

 
 



4 

 
IV. COUNTING TECHNIQUE I: PERMUTATION 
 
(A) SELECTION WITH REPLACEMENT. When selecting objects with replacement, the 

first object can be selected in n different ways, since there are n objects in the set 
from which to choose, and any of them can be chosen. Since the selected object is 
returned to the set before making the second selection, the second object can also 
be selected in n different ways. Similarly, each of the other r objects can be chosen 
in the same n ways. Hence, r objects together can be selected in a number of ways 
equal to the product: 

 
    n n n n n

r factors

r× × × =...1 244 344  

 Example 1: How many 3-digit numbers can be formed from the digits 2, 4, 6, 7 and 
9 ? 

 There are three positions to be filled in a 3-digit number. Each position can be 
filled in 5 different ways. Thus, the three positions can be filled in 5 5 5 125× × =  
ways. 

 
  
(B) SELECTION WITHOUT REPLACEMENT. If an event can happen in m different ways, 

and after this was occurred, another event can happen in n different ways, then the 
two events can happen in mn different ways.  

 
 Furthermore, if a first event can occur in n1 ways, a second event can occur in n2  

ways, a third event can occur in n3  ways, and so on, then the number of ways for 
these events to occur in succession is n n n1 2 3× × ×...ways. 

 
 Example 2: If we have available 10 rats for experimental purposes and wish to 

select 3 of the rats for three different experiments. In how many ways can the 
selection be made?  

 
 The first rat can be selected in 10 different ways, since any one of the available rats 

can be selected. Having selected the first rate, there remains 9 rats for selection, so 
the second rat can be selected in 9 different ways. Similarly, the third rat can be 
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selected in 8 different ways. Consequently, the number of ways in which three rats 
can be chosen is given by 10 9 8× ×  = 720 ways. // 

 
 When counting numbers of outcomes, the following notation is extremely useful: 

the product of the first n natural numbers is called factorial n and is denoted by n! 
Thus  

 
     n! = ( ) ( ) 123...21 ××××−×−× nnn . 

 In fact we also can write: n! = n(n - 1)!. 
 
 
(C) SELECTION OF r OBJECTS FROM n OBJECTS WITHOUT REPLACEMENT.  
 
 We now consider the case in which the r objects are selected one-by-one without 

replacement from n objects. That is, the first object is not replaced before the 
second is selected, the first two are not replaced before the third is selected, and so 
on. A selection made in this way is called a permutation (or an ordered selection) 
of r objects from n.  

 As before, the first object can be selected in n ways. However, the second object 
can be selected in (n -1) ways. Similarly, the third can be selected in (n - 2) ways, 
and so on. The last object can be chosen in (n - r + 1) ways. Thus the number of 
ways in which the whole permutations can be selected is given by the product: 

   n(n - 1)(n - 2). . . . .(n - (r - 1)). 

 This product is denoted by Pr
n  and is read as "the number of permutations of r 

objects from n possible objects". This is given by: 

   ( )!
!
rn

nPn
r −
=  

 
 Example 3: From a group of 8 persons, it is required to select individuals to 

participate in 5 different tests. How many ways can the selection be done? 
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 Since the tests are different, the order in which the 5 are chosen is significant. The 
number of ways in which the choice can be made is therefore the number of 
permutations of 5 out of 8 subjects, which is actually:  

   ( ) 6720!5
!3
!8

!58
!88

5 ===
−

=P . // 

 
 
V. COUNTING TECHNIQUE II: COMBINATION 
 
 Suppose that we have 7 patients A, B, C, D, E, F and G. The number of ordered 

selections of 3 patients from the 7 is P3
7 . Now consider the all the subset of patients 

A, B, C, say. As ordered selection, there are 3! such subsets (ie. ABC, ACB, BCA, 
BAC, CAB, CBA). But only who in the subgroup is of interest, then these 3! 
permutation is just one combination (one subgroup), since all permutations have 
exactly the same patients A, B and C.  

 
 Hence, the total number of subgroups of 3 patients possible from 7 patients is equal 

to 1
3!

 of total ordered selections:  1
3 3

7

!
P ; that is: 

     ( )!37!3
!77

3 −
=C  

 or generally  ( )!!
!

rnr
nCn

r −
=  

 and is read as: "the number of combinations of r objects from n objects".  
 
 Example 4: Four rats are selected for experiment from a group of 6 white and 4 

brown rats. In how many ways can the selection be made so that the selected group 
contains: (a) two brown rats; (b) at least two brown rats ? 

 
 (a) We have to select, in all, 4 rats for the experiment. Since the selection has to 

contain 2 brown rats, so other 2 must be white. Now the number of selections of 2 
brown rats from 4 is given by: C2

4 ; and the number of selections of 2 brown rats 
from 6 is given by: C2

6 .  In total, we can select by C2
4×C2

6  = 90 ways. 
 
 (b) In this case, we have to select at least two brown rats, the selection can have 

either (i) 2 brown and 2 white, (ii) 3 brown and 1 white or (iii) 4 brown (and no 
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white) rats. Case (i) can have 90 different ways (see (a)). Case 2 can have 
C C3

4
1
6 24× =  ways. Case (iii) can have C C4

4
0
6 1× =  way. Thus, in total, we have 

90+24+1 = 115 ways of selection. // 
 
 There are many applications for combination and permutation, however, we are not 

going to these as they are either too complicated or beyond the scope of this 
introductory topic. 

 
 
VI. PROBABILITY 
 
 DEFINITION: If an event A can occur in n equally likely outcomes, nA  of which have 

attribute A, then we can say that attribute A has a probability of nA /n.  
 
 It is somewhat conventional to denote the statement "the probability that A occurs" 

by P(A).  
 
 It follows from this definition that, probability is a number between 0 and 1 which 

expressed the chance that a specific event occurs under a stated condition. It is also 
clear that the probability of an event other than A occurs is  1-P(A). This is called 
complementary probability. 

 
 Observations of phenomena can result in many different outcomes, some of which 

are more likely than others. For example, if we throw a fair die and suppose that the 
number 7 turns up, what is the chance that, if we throw the die again, the number 7 
will again turn up. There have been arguments that the number 7 is likely to turn up 
because it has turned up. On the other hand, there have been counter-argument that 
since the number 7 has turned up, therefore, the chance it turns up again is less than 
other numbers. A number of attempts have been made to give a precise definition 
for probability of an outcome. We will discuss a few of these: 

 
 Classical interpretation arose from games of chance. Typical probability 

statement of this type are "the probability that a flip of coin will show 'head' is 1/2 
and the probability of drawing an ace is 4/52". The numerical values of these 
probabilities arise from the nature of the games. A coin flip has only two possible 
outcomes: head or tail; so the probability of a head should be 1/2. Similarly there 
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are 4 aces in a standard deck of 52 cards, so the probability of drawing an ace in a 
single draw is 4/52. In this classical concept, each possible distinct result is called 
an outcome; an event is identified as a collection of outcomes. The application of 
this interpretation depends on the assumption that all outcomes are equally likely. If 
this assumption does not hold, the probabilities indicated by the classical 
interpretation will be in error. 

 
 Relative frequency concept of probability is an empirical approach to 

probability. If an experiment is repeated a large number of times and event E 
occurs in 30% of the times, then 0.30 should be a very good approximation to the 
probability of event E. Symbolically, if an experiment is conducted n different 
times and if the event E occurs n(E) of these trials, then the probability of event E 
is approximately n(E)/n.  

 
 We say "approximate" because we think of the actual probability P(event E) as the 

relative frequency of the occurrence of the event E over a very large number of 
observations or repetitions of the phenomenon. The fact that we can check 
probabilities that have a relative frequency interpretation (by simulating many 
repetitions of the experiment) make this concept very attractive and practical. 

 
 The personal or subjective probability can be applied in situations in which it is 

difficult to imagine a repetition of an experiment. These are "one shot" 
experiments. For example, a doctor estimates the probability of survival after an 
operation on a patient A would not be thinking of a long series of repeated 
operations on the patient. Rather, he would use a subjective (personal) probability 
to make a one-shot statement of belief regarding the likelihood passage of the 
proposed operation. The problem with subjective probability is that they can vary 
from person to person and they can not be checked. 

 
 Example 5: In a district, there are m people with fractures and n people without 

fracture. What is the probability that 10 persons, selected randomly from this 
district, are fracture subjects.  

 
 Let event A = {fracture}. The number of selections of 10 fracture people from (m + 

n) people is: Cm n
10
+ . On the other hand, the number of selections of 10 fracture 
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subjects from m fracture subjects (event A) is: n CA
m= 10. Hence, the probability that 

10 subjects are chosen is: ( ) nm

n

C
CAP +=
10

10 . 

 
 Example 6: Suppose that in a lottery ticket, there are 40 numbers, of which, there 

are 6 winning numbers in each draw. If we buy one ticket, what is the probability 
that: 

 (a) we win 4 out of 6 numbers; 
 (b) we win 5 out of 6 numbers; 
 (c) we win all 6 numbers. 
 
 The problem is equivalent to drawing 6 balls from an urn in which there are 6 white 

balls (winning numbers) and 40-6=37 black balls (not winning). In (a) the number 
of selections 6 numbers out of 40 numbers is C6

40; and the number of selections of 4 
winning numbers from 6 winning numbers and 2 numbers from 34 non-winning 
numbers is C C4

6
2
34× ; then the probability of winning 4 numbers out of 6 is: 

C C
C

4
6

2
34

6
40

× . Similarly for (b) the probability is: C C
C

5
6

1
34

6
40

× . And finally, the event of 

winning all 6 numbers is C C
C

6
6

0
34

6
40

×  = 1

6
40C

 // 

 
 We now examine a number of properties and theorems probability follow from the 

concepts and postulates presented in the last few sections: 
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(A)  JOINT, MARGINAL AND CONDITIONAL PROBABILITY 
 
 Example 4: Consider the following table which tabulates the number of women 

with and without fracture according to age group: 
 
 Table 1: Incidence of fractures among women classified by age group 
 
   
   Age 
 Event    
  70-79 80-89 90+ Total 
   
 Fracture 7 7 8 23 
 Non fracture 43 23 12 77 
 Total 50 30 20 100 
   
 
(i)  In statistics, we call this tabulation a bivariate sample space because the basic 

outcome (fracture versus non-fracture) can be considered a joint outcome of the 
second variable age. The probability of the joint outcome is referred to as a joint 
probability. For instance, P(Fracture ∩  70-79) = 7/100 = 0.07 is a joint probability 
of fracture for a women aged between 70-79 years. 

 
(ii) With bivariate sample space, we are also frequently interested in the probability 

distribution of an individual variable considered separately. For instance, for the 
above data, the marginal probability of fracture is:  

 

   P(fracture) = 7
100

7
100

8
100

23
100

+ + =  = 0.23 

 
 Since the probabilities obtained by summing across either one of the classifications 

are shown in the margins, they are called the marginal probabilities. 
 
(iii) Conditional probability. Often, we want to know the probability of one event 

occurring, given that a second event occurs. We denote the statement "the 
probability that A occurs given that B occurs" as P(A | B), where the "|" is 
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equivalent to the expression "given". The conditional probability is defined as 
follows: 

 
 If A and B are any two events of a sample space and P(B) is not equal to 0, the 

conditional probability of A given B, is: P(A | B) = ( )
( )BP

BAP ∩ . 

 It follows from this definition that in Table 1, the probability that a woman will 
have fracture given that she is 90+ years of age is equal to:  

 

   P(fracture | 90+) = ( )
( ) =

+
+∩

90
90

P
fractureP  8 100

20 100
/
/

 = 0.40.  

 Similarly: P(fracture | 70-79) =  7 100
50 100

/
/

 = 0.14.  

 
 On the other hand: 
 

   P(70-79 | fracture) =  ( )
( )fractureP

fractureP ∩− 7970  = 7 100
23 100

/
/

 = 0.30. 

 
(B) THE ADDITION THEOREM. For any two events A and B of a sample space,  
 
 ( ) ( ) ( ) ( )BAPBPAPBAP ∩−+=∪  if A and B are not mutually exclusive 
 ( ) ( ) ( )BPAPBAP +=∪   if A and B are mutually exclusive. 

 
 For example, referring to data in Table 1 again, let the events A={70-79} and 

B={fracture}. Then by definition, we have: 
 
  P(fracture OR 70-79) = P(A ∪  B)  
     = P(A) + P(B) - P(A∩  B) 
     = 0.50 + 0.23 - 0.07 
     = 0.66. 
 
 However, in that table the events of fracture and the event of a person aged 80+ are 

mutually exclusive. Now P(fracture) = 0.23 and P(80+) = 0.20 + 0.30 = 0.50, 
hence, the probability that P(fracture ∪  80+) = 0.23 + 0.50 = 0.73. 
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(C) THE MULTIPLICATION THEOREM 
 
 For any two events A and B of a sample space,  
 
   ( ) ( ) ( ) ( ) ( )BAPBPABPAPBAP || ==∩  

 
 Example 5: Let A and B denote the events of osteoporosis and death, respectively. 

Suppose that the probability of death is 0.80. Suppose further that the conditional 
probability of death given having osteoporosis is 0.90. We wish to find the 
probability of developing osteoporosis AND death.  

 
 It is perhaps easier to write these information in symbols: P(A) = 0.15, P(B) = 0.80 

and P(B | A) = 0.90. Then what we wish to find could be expressed as: 
 
   P(A∩B) = P(A). P(B | A) 
       = 0.15 ×  0.90  
       = 0.135   // 
 
 
(D) INDEPENDENT EVENTS 
 
 In statistics, when we talk about two independent events A and B when we mean: 
 
   P(A | B) = P(A)  or  P(B | A) = P(B)  
 
 Or more popularly: 
 
   P(A∩B) = P(A) ×  P(B). 
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 Example 6: The following table shows the relationship between length of stay and 
insurance status.  

 
  Table 2: Length of Stay (days) and Insurance Status 
   
   Insurance 
 LOS    
  Insured Uninsured Total 
   
 <5 0.42 0.18 0.60 
 5-10 0.21 0.09 0.30 
 >10 0.07 0.03 0.10 
 Total 0.70 0.30 1.00 
   
 
 In this Table, the event "<5 days" and the event "insured" are independent since 

P(<5 and Insured) = 0.60 ×  0.70 = 0.42.  
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VII. SPECIFICITY AND SENSITIVITY 
 
 The terms specificity and sensitivity were introduced by Yerushamly back in 1947 

to describe the efficiency of a diagnostic test. Since then a number of new terms 
have been coined and admittedly tend to confuse statistical users than to clarify the 
usage of these indices. In this section, we will survey these terms and introduce the 
use of sensitivity and specificity as in evaluating a screening test, which we have 
briefly touched upon. 

 
 Consider the following scenario. We have a test which can predict whether a 

subject will develop osteoporosis. The test gives either positive (P) or negative 
result (N). Suppose having administered the test and we follow a group patients for 
a period and observe the present (P) or absence (N) of osteoporosis. We can 
represent the result of this study as follows: 

 
 Result  Confirmed after follow-up 
  of test   P  N  Sum 
           

 P a b a+b 
 N c d c+d 
           
 Sum a+c b+d N 
 
 where a, b, c and d are frequencies of observations and N=a+b+c+d is the total 

number of patients.  
 
 We could describe the table in a rather probabilistically friendly format as follows:  
 
  Result  Confirmed after follow-up 
   of test   P  N   
          

  P true positive false positive  
  N false negative true negative   
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(a)  According to classical definition, the sensitivity (s) = (true positive rate) of the 

test is the probability of having osteoporosis given a positive test result:  
 

    s = a
a c+

 

 
(b) And the specificity (f) = (true negative rate) is defined as the probability of 

having no osteoporosis given that the test is negative:  
 

    f d
b d

=
+

 

 
(c) Predictive value. When we started the study with a population whose condition 

had already been confirmed, but the doctor who later uses the test starts with 
patients whose condition is not known. Yet, the purpose of the test is to predict 
what the patient's condition really is. So, the doctor wants to know its predictive 
accuracy or how well the test would perform for an unknown (or indeed any) 
patient. If the test is positive, is the patient actually has osteoporosis? If the test is 
negative, is the actual osteoporosis is likely to be absent? 

  
 To answer these question we calculate the positive predictive value (denoted by 

v)as the index of positive accuracy (v) as follows:  
 

   v = a
a b+

 

 
and the negative predictive value as the index of negative accuracy (denoted by g): 
 

   g = d
c d+

 

 
 Occasionally, the positive predictive and negative predictive values are referred to 

as posterior probability of disease and posterior probability of no disease, 
respectively. 

    



16 

(d) It is obvious from the above table that the prevalence of the disease could be 
estimated as the of pre-test likelihood of disease (or prior probability of disease), 
which is:  

 
a c

N
+ . 

 
(e)  The likelihood ratio (LR) is a measure of discriminant by a test result. A LR of 

greater than 1 raises the probability of disease and is often referred to as "positive" 
test result. A LR of less than 1 is usually referred to as "negative" test result. 

 

    LR sensitivity
specificity

=
−1
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VII. BAYES' THEOREM 
 
 Up to now, we know that P(D | S) is generally different to P(S | D) for any two 

events D and S. 
 
 We now consider the following typical medical problem. Let D denote the presence 

of a disease and ND the absence of the disease. Let S denote the symptom of the 
disease. It is often that we know the prevalence of the disease in the general 
population P(D), the probability that a subject with disease will exhibit the 
symptom P(S | D), and the probability that a subject without disease will exhibit the 
symptom P(S | ND).  We wish to find P(D | S), the probability of getting the 
disease given that the subject exhibits the symptom.  

 
 Notice that all subjects with S will have either D or ND, so S can be written as "S 

and D" or "S and ND", since the two events are mutually exclusive: 
  
   P(S) = P(S∩D) + P(S∩ND) 
 

 But  ( ) ( )
( )DP

DSPDSP ∩
=|  

 and  ( ) ( )
( )NDP

NDSPNDSP ∩
=|  

 It follows that, if we multiply by P(D) and P(ND), respectively, that: 
 
   P(S∩D) = P(D). P(S | D) 
 and  P(S∩ND) = P(ND). P(S | ND). 
 

 But  ( ) ( )
( )

( )
( ) ( )NDSPDSP

SDP
SP

SDPSDP
∩+∩

∩
=

∩
=|  

 

 hence  ( ) ( ) ( )
( ) ( ) ( ) ( )NDSPNDPDSPDP

DSPDPSDP
||

||
×+×

×
=  

 
 This (last expression) is called Bayes' theorem. Notice that the expression on the 

right involves only quantities that we have assumed to be (and is usually) known. 
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 Example 7:  Suppose that a new screening test is proposed for the detection of 
fracture. The prevalence of fracture in the general population is known to be 10%. 
The test has been investigated in fracture subjects and was found to give positive 
result in 70% of such cases (sensitivity). When given to subjects without fracture, 
the test yielded a positive result of 20% i.e. specificity is 80%).  

 We want to know what is the proportion of subjects with positive test who, when 
followed up, will actually be found to have fracture? 

 
 Let us represent the prevalence of fracture by P(D) = 0.10, the probability of being 

positive in fracture subjects by P(S | D) = 0.70, and the probability of being positive 
in non-fracture subjects by P(S | ND) = 0.20. Then, the probability that a subject 
will have fracture given a positive result is: 

 

  P(D | S) = ( ) ( )
( ) ( ) ( ) ( )NDSPNDPDSPDP

DSPDP
||

|
×+×

×  

    =  ( ) ( ) 2.01.017.01.0
7.01.0

×−+×
×  

    =  0.07 / 0.25  
    =  0.28.  // 
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IX. EXERCISES 
 
1. Evaluate the following: 

 (a) ( ) !2!2
!

−n
n  (b) 7 5

4
! !

!
−  (c) 10 8

8
! !

!
+  (d) 100

99
99
98

!
!

!
!

−  

2. Show that ( ) ( )!2
1

!1
1

!

2

−
+

−
=

nnn
n   

3. Solve the equation C C C xx x x
1 2 3

7
2

+ + =  

4. Simplify (a) C2
5   (b) C0

5   (c) C5
5  

5. Simplify  (a) Cn
n
−2  (b) Cn

n
−1 

6. Suppose that a dietitian has available the following foods listed by their main 
vitamin content: 

 
  Vitamin A: Vitamin B Vitamin C 
  lectuce peanuts oranges 
  carrots peas lemons 
  squash lean meat 
  egg yolk egg white 
  butter liver 
   milk 
   cereal 
 
 How many meals are possible if each contains 
 
 (a) one food from each vitamin group? 
 (b) 3 foods from group A and none from group B or group C ? 
 (c) 2 from group, 3 from group B and none from group C ? 
 (d) 2 food from group A, 3 from group B and 1 from group C ? 
 (e) 4 from group A, 4 from group B and 1 from group C ?. 
 
7. In a group of 15 women, there are 7 osteoporotic women. What is the probability 

that if 12 women are selected, then there are: 
 (a) exactly 6 osteoporotic women (b) at least 6 osteoporotic women. 
 
8. In a group of rats, there are 6 of genetic type R, 4 of type W and 3 of type B. If 

three are selected randomly from the group. What is the probability that there are: 
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 (a) all R rats    (b) all W rats 
 (c) all the same genetic type  (d) different genetic types 
 (e) 2 of type R and 1 of type W  (f) exactly 2 W rats 
 (g) at least 1 W rat   (h) a particular rat is included. 
 
9. There were 10 male and 5 female rats in a cage. If two animals are drawn out from 

the cage in blind and randomly, what is the probability that: 
 (a) both animals are females (b) both animals are males 
 (c) at least one animal is male (d) no male. 
 if the sampling is with replacement (the first rat is returned before a second rat is 

selected). 
 
10. Under the same condition as in question 9, but the sampling is without replacement. 

Find the required probabilities (a) to (d).  
 
11. Let A and B denote two genetic characteristics and suppose that the probability is 

1/2 that an individual chosen at random will have A, 3/4 that he/she will have B. 
Assume that these characteristics occur independently. What is the probability that 
an individual chosen at random will have  

 (a) both  (b) neither (c) exactly one  characteristics? 
 
12. Five identical rabbits are in a cage. Some have inoculated against a virus. Find the 

probability that you select the inoculated rabbits if you select: 
 (a) one and only one was inoculated  
 (b) three and two were inoculated  
 (c) two and two were inoculated  
 
13. Suppose that a certain opthalmic trait is associated with eye colour. Three hundred 

randomly selected subjects are studied with results as follows: 
 
   Eye colour 
      Trait  Blue  Brown  Other 
           

 Yes 70 30 20 
 No 20 110 50 
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 What is: 
 (a) P(trait=Yes)   
 (b) P(blue eyes and trait=Yes) 
 (c) P(blue or brown eyes and trait=yes) 
 (d) P(brown eyes | trait=Yes). 
 
14. Treatment Y causes a toxic reaction in 25% of persons to whom it is given. What is 

the probability that 0, 1, 2, 3 or 4 of four persons chosen at random will have a 
toxic reaction ? 

 
15. Twenty percent of women in a community is diabetic. Of these, 75% have low 

bone mineral density (BMD). Of those who did not have diabetes, 20% have low 
BMD. What is the probability that a randomly selected low BMD woman who has 
diabetes? 

 
16. Let P(A | B) = 0.2,  P(not A | not B) = 0.4 and P(B) = 0.3. 
 (a) Use Bayes' theorem to calculate P(B | A) 
 (b) Construct the 2x2 probability table with column (A, not A) and rows (B, not B). 

Compute P(B | A) directly from the table. 
 
17. One problem with using the angiogram to diagnose stroke is the slight risk of death 

associated with this test (<1%). Some studies have attempted to use the PET 
scanner (which measure blood flow in the brain) to detect stroke disease non-
invasively as an alternative to the angiogram. A comparison was made on the same 
patients between these two methodologies for detecting stroke, with the results 
given in the following table: 

 
  Angiogram result 
 PET scan + - 
    

  + 21 3  
  - 8 32 
    

  
 Let us now regard the angiogram as the definitive test. Using the above data to 

calculate relevant statistics and comment on the new (PET scan) test. 
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18. Consider the following strategy for the diagnosis of pancreatic cancer using 4 tests 

(ERP, US, PFT and ANG). 
  (i) If two or more of the tests are positive, diagnose pancreatic cancer; 
  (ii) If more than two of the tests are negative, diagnose no pancreatic cancer. 
 (a) Set up a 2x2 table for this strategy, cross-classifying diagnosis with pancreatic 

cancer for the data shown in Table 1: 
 (b) Compute the sensitivity, specificity and predictive values of this strategy. 
 (c) How does this strategy compare to ERP alone? 
 
 Table 1: Four test results and surgical diagnosis in 42 patients who had all 4 tests 

performed (NEJM 1977). 
 
   
 Pancreatic disease Other diseases 
   
 Comb ANG ERP US PFT Cancer Inflam. Cancer Inflamm. 
   
 A + + + +    12 
 B - - - +   2 12 
 C - - + -   1 1 
 D - + - -  
 E + - - -    3 
 F - - + + 
 G - + - + 1 
 H + - - +  
 I - + + -  
 J + - + -   1 
 K + + - - 2 
 L - + + +  2 
 M + - + +  2 
 N + + - + 1 
 O + + + -  2 
 P + + + + 10 
 Total     14 6 4 18 
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19. About 10% of young adults (aged 11-30) with sore throats have streptococcal 
pharyngitis, as indicated by a positive throat culture. Investigation has indicated 
that a new test called Gram stain of the pharyngeal exudate. The following table 
shows the sensitivity and specificity of the Gram stain, several signs, and history of 
exposure to a family member with streptococcal pharyngitis. 

  
  Fever Cervical Pharyngeal History Positive Gram 
  >38o adenopathy exudate of exposure stain 
    
  Sensitivity 0.33 0.73 0.45 0.18 0.73 
  Specificity 0.89 0.55 0.78 0.92 0.96 
    

 
 (a) Compute the positive and negative likelihood ratios. 
 (b) A 20-year old man with a sore throat has a fever of 39o . What is the probability 

of streptococcal pharyngitis. 
 (c) A 20-year old man with a sore throat has a sister with streptococcal pharyngitis. 

He has a fever of 39o . What are the odds and probability of streptococcal 
pharyngitis. 

 (d) Which of the test do you think are independent? 
 (d) Which is the best test according to these data? 
 
 


